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The ABS Frame

▪ US Postal System’s Computerized Delivery Sequence File (CDS)

– Contains all addresses for which USPS delivers mail

▪ 90–98% estimated coverage of residential housing units (AAPOR 2016)

▪ Most addresses use the format: 

123 Main Street

Unit 1

Anytown, NY 12345

▪ Names are not included
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Undercoverage

▪ Undercoverage is much higher in rural areas

– 23-35% in rural areas vs. 1-10% in urban areas (Dohrmann et al 2006; Dohrmann 

et al 2007; O’Muircheartaigh et al 2007)

▪ The CDS frame

– Purposely excludes:

▪ Unique ZIP codes (e.g., Indian reservations and universities)

▪ Vacant units in rural areas

– Includes “unusable” addresses:

▪ PO Boxes

▪ Simplified addresses
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Coverage Bias

▪ Three studies have assessed the impact of undercoverage on bias

– English et al (2011)

▪ Fertility in Cumberland, Maine

– Morton et al (2010)

▪ Substance abuse with small uncovered counts

– Eckman & Kreuter (2013)

▪ Fertility, health, sexuality, and demographics of two list frames (not the CDS)
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This Presentation

▪ Research Question

– What is the risk of coverage bias when using the USPS CDS in a face-to-

face survey?

▪ Goal

– Inform decisions on whether to 

▪ Use the ABS frame for a given survey, and/or

▪ Enhance the ABS frame (e.g., a hybrid design or HOI)
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Methods – Monte Carlo Simulation
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Methods – Monte Carlo Simulation
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RECS 

Frame

RECS 

Survey

▪ 800 Census block groups across the US

▪ 579,459 CDS addresses

▪ 6,841 enumerated addresses

▪ 12 demographic and building characteristic variables



Methods – Monte Carlo Simulation

8 ESRA 2017

RECS 
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RECS 

Survey

Universe

▪ Created one universe 

▪ Replicated cases from the RECS survey by 

their final weights

▪ Used the frame information (and appended 

ACS data) to assign coverage propensities



Methods – Monte Carlo Simulation
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Frame ▪ Created one frame for each 

coverage rate 1-100% (n=100)

▪ Assigned each unit a coverage 

propensity



Methods – Monte Carlo Simulation
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▪ For each frame

– Drew 1,000 

samples of 1,000 

addresses per 

sample

▪ 2-stage design

– 200 PSUs

– 5 addresses per 

PSU



Methods – Monte Carlo Simulation
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▪ For each sample, 

– Calculated the 

proportion/distribution/mean of 

each of the 12 variables

– Calculated bias compared to the 

universe

▪ Bias ( ෠𝜃 − 𝜃) and relative bias (
෡𝜃−𝜃

𝜃
)

▪ Z-test for significance
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Methods – Monte Carlo Simulation
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▪ For each level of coverage, 

– Risk is the proportion of samples 

for which the estimate was 

significantly different than the 

universe (p<0.05)



Modeled Coverage Distribution – Heating Fuel Bias

13 ESRA 2017

▪ As coverage 

declines, quickly 

begin to overest. 

natural gas heating

▪ Other heating fuels 

are relatively stable 

until coverage drops 

below ~50%.



Modeled Coverage Distribution – Heating Fuel Relative Bias
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▪ The magnitude is 

small but meaningful 

since prevalence is 

small.

▪ Relative bias 

increases quickly 

(except elec.) as 

coverage declines.

▪ Findings not 

surprising. Coverage 

& heating fuel both 

corr. with urbanicity.



Modeled Coverage Distribution – Heating Fuel Risk
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▪ Risk increases 

quickly for most 

heating fuels as 

coverage declines.



Modeled Coverage Distribution - Bias
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▪ The magnitude of the 

bias is relatively 

unaffected by 

coverage for 50% of 

the variables.



Modeled Coverage Distribution – Relative Bias
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▪ Only 25% variables 

are relatively 

unaffected by 

coverage when 

considering relative 

bias.

▪ Bedrooms and 

education had small 

changes, but had 

large effect given 

small prevalence. 



Modeled Coverage Distribution – Risk 
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▪ Risk is dependent on 

the variable of 

interest.

– HH size unaffected.

– Year built and age 

has low risk when 

coverage > 75%

– Risk of bias 

increases quickly for 

other variables as 

coverage declines.



Summary

▪ What is the risk of coverage bias when using the USPS CDS in a 

face-to-face survey?

– It depends on:

▪ The variable of interest

▪ The unit of analysis (categorical or dichotomous)

▪ The level of coverage
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Next Steps

▪ Replicate

– Simulate other sub-national domains: Rural and Mid-Atlantic

– Recreate analysis for alternative modes: Mail

– RECS frame may not be the true universe

▪ Did not attempt to enhance CDS in high coverage areas

– RECS is not necessarily applicable to a wide variety of surveys (e.g., 

health)

▪ Determine whether weights could reduce risk

▪ Identify patterns in bias risk by variable type
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Coverage Propensity Model (RECS Frame, n=586,301)
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Variable Beta

Intercept -1.13***

Urbanicity (ref=rural)

Urban Cluster -0.11**

Urban Area 1.09***

Building Type (ref=multi-family unit)

Single Family Unit 2.24***

Unknown -3.83***

Region (ref=West)

Northeast -1.33***

Midwest 2.07***

South 0.45***

Mean Income in CBG (in $1,000s) 0.05***

CBG Race/Ethnicity

Percent Hispanic 0.06

Percent NH Black 4.95***

Percent NH Oth -0.17

CBG Education

High School Graduate 5.38***

Bachelors Degree + 1.27***

Percent Home Owners in CBG 0.26**

Percent Vacant HUs in CBG -7.76***
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